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Evaluation of generalized exponential integrals using
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An efficient and reliable method is presented for calculations the generalized expo-
nential (GE) integrals. The basic series expressions of the generalized GE integrals are
established. Evaluation of GE integrals for different values of the parameters, show the
efficiencies of the new approach. The numerical results illustrate clearly a further reduc-
tion in calculation times. The relationships obtained are valid for the arbitrary values
parameters and the computation results obtained are in good agreement with the lit-
erature. Numerical results obtained and comparisons with numerical results from the
literature are listed.
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1. Introduction

It is well known that in any various fields of theoretical physics, quantum
chemistry, theory of transport processes, theory fluid flow and astrophysics the
major task involves the efficient and accurate computation of GE integrals [1–
12]. As complicated system computation of these integrals becomes one of the
most laborious and consuming steps in practical reasons. Especially, GE inte-
grals appear in the evaluation of the derivatives of the L-series of an elliptic
curve, in a theory of multiple light scattering, and in radiative transfer problems
from astrophysics [12–21].

Significant progress in theoretical methods and computer technology dur-
ing in past decade allows us to obtain reliable theoretical predictions for molec-
ular systems of unprecedented size. The same factors also changed the area of
theoretical physics concerned with prediction of accurate molecular properties.
Unfortunately, they also were not entirely successful. To our knowledge, many
authors [22–35] have addressed this problem although many improvements have
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been made in the past few years by the use of computer, an efficient general for-
mulae for the calculation of GE integrals is not yet available.

We have had considerable success in using the multinomial expansion the-
orems in evaluation GE integrals. In order to avoid factorials the formulas have
been expressed in terms of binomial coefficients. For quick calculations, the
binomial coefficients are stored in the memory of the computer.

The aim of this work is to present a new expansion formula for GE inte-
grals. I am believe that, the derived formulas would be useful for experimental
and theory.

2. Expression for generalized exponential integral in terms of multinomial
coefficients

The GE integrals are defined as

Gk(x) = 1
(k − 1)!

∫ ∞

1
e−xy(ln y)k−1 dy

y
, (1)

where k = 0, 1, . . . . Milgram [28] introduced another generalization of the GE
integral in the form:

Ej
s (x) = 1

�(j + 1)

∫ ∞

1
e−xy(ln y)j

dy

ys
. (2)

Consequently, by considering the particular case of equation (2) with j =
k−1 and s = 1, one can obtain the GE integral that is Gk(x) = Ek−1

1 (x). We
notice that, taking into account the formula (2) for j = 0 we obtain for well
known exponential integral Es(x):

Es(x) =
∫ ∞

1
e−xy dy

ys
. (3)

This integral is the leading term in a transport and fluid problems, especially in
astrophysics. In order to established expressions for the GE integrals we shall
first considering well known the multinomial expansion theorems and series rela-
tionship of the ln x, respectively [36]:

(x1 + x2 + x3 + · · · + xt )
n

=
n∑

n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

...

n−n1−n2−...−nt∑
nt=n−n1−n2−...−nt

Fn1,n2,n3,...nt
(n)x

n1
1 x

n2
2 x

n3
3 .....x

nt

t , (4)

and

ln x = lim
t→∞

t∑
i=1

1
i

(
x − 1

x

)i

for x � 1
2
. (5)
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Here t is upper limit of summation and Fn1,n2,n3,...nt
(n) are multinomial coeffi-

cients defined by

Fn1,n2,n3,...nt
(n) = n!

(n1)!(n2)!(n3)!.....(nt )!
. (6)

In order to avoid factorials, we can be the expressed the multinomial coefficients
(equation (6)) in terms of binomial coefficients:

Fn1,n2,n3,...nt
(n)

= Fn1(n)Fn2(n − n1)Fn3(n − n1 − n2).....Fnt
(n − n1 − n2 − · · · − nt−1), (7)

where Fm(n) = n!/[m!(n − m)!] are binomial coefficients. For quick calcula-
tions, the binomial coefficients are stored in the memory of the computer. For
the binomial coefficients we use the following recurrence relation:

Fm(n) = Fm(n − 1) + Fm−1(n − 1). (8)

In order to put these coefficients into or to get them back from the memory, the
positions of certain coefficients Fm(n) are determined by the following relation:

F(n, m) = n(n + 1)/2 + m + 1. (9)

Now we move on the determination of expression for the GE integral,
(equation (2)), in terms of exponential integral and multinomial coefficients. Tak-
ing into account equations (4) and (5) in equation (2) we obtain for the GE inte-
gral the series expansion formulas in terms of multinomial coefficients:

En
s (x) = 1

�(n + 1)

n∑
n1=0

n−n1∑
n2=0

n−n1−n2∑
n3=0

· · ·
n−n1−n2−,...,−nt∑

nt=n−n1−n2−···−nt

×
n1+2n2+,··· ,+tnt∑

i=0

(−1)iFn1,n2,n3,...,nt
(n)Fi(n1 + 2n2 + · · · + tnt )

× 1
2n23n3 · · · tnt

Ei+s(x) (10)

where t = 1, 2, 3, . . . and Es(x) is the well known exponential integral defined
by equation (3). We note that the choice of reliable formulas for evaluation of
these auxiliary functions is the prime importance in accurate GS integral calcu-
lations. Several procedures for evaluating the exponential integral can be found
in the literature [36–41]. In order to evaluate the exponential integral function
En(x), for x < 1 are calculated by the recursive formula [31]:

(n − 1)En(x) = e−x − xEn−1(x) (11)
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where the starting term is given by

E1(x) =
∫ ∞

1
t−1e−xtdt (12)

The exponential integral function E1(x), is evaluated by means of the Gaussian
integration described in Ref. [30]. For x > 1 we employ the following continued
fraction representation [30]:

En(x) = e−x

{
1

x + n−
1 × n

x + n + 2−
2(n + 1)

x + n + 4− · · ·
}

. (13)

3. Numerical calculations and discussion

In this section, we describe methods to GE integrals using the formulas
presented in the previous section. The computations programs were performed
in the Turbo Pascal language and were implemented using a personal computer
PENTIUM III 800 MHz. The computations were performed for wide range of
GE integral parameters. The algorithm proposed in this work can be useful for
the calculation of GE integrals.

Basic formulas that can be efficiently implemented for computer evalua-
tion were obtained for every type of GE integrals. We compared the numeri-
cal results obtained using by [33]. As will be clear from our tests that for value
t = 15 in equation (10), this formula yields significantly accuracy for arbitrary
values of integral parameters. Greater accuracy is easily attainable by the use of
more terms of expansion (10). Table 1 contains values obtained for the com-
plete expressions of the GE integrals. As can be seen from Table, the calcula-
tion results of GE integrals show good rate of convergence with literature under
range of parameters. Using the method discussed in this paper, such calculations
are not much more difficult. Hopefully, this simplication will persist at higher
orders.

Table 1
The values of Ej

s (x) integrals obtained from equation (10) and Ref. [33].

s j x Equation (8) Ref. [33]

1 3 2 7.73625447084289E–04 0.0007740512
1 3 1 1.10207420567491E–02 0.0110708954
1 3 5 2.90271482349927E–06 0.0000029028
1 3 10 2.09313486108000E–09 0.0000000021
3 2 4.5 2.37968837085995E–05
5 3 7.4 2.18895135850061E–08

10 3 3.8 6.58601779248419E–07
12 2 12.3 3.15418329213879E–10
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